The complex Monge–Ampère equation for complex homogeneous functions in Cn
نویسندگان
چکیده
منابع مشابه
Application of the Kudryashov method and the functional variable method for the complex KdV equation
In this present work, the Kudryashov method and the functional variable method are used to construct exact solutions of the complex KdV equation. The Kudryashov method and the functional variable method are powerful methods for obtaining exact solutions of nonlinear evolution equations.
متن کاملThe Complex Bateman Equation
The general solution to the Complex Bateman equation is constructed. It is given in implicit form in terms of a functional relationship for the unknown function. The known solution of the usual Bateman equation is recovered as a special case. e-mail: [email protected] e-mail: [email protected].
متن کاملPolynomially bounded solutions of the Loewner differential equation in several complex variables
We determine the form of polynomially bounded solutions to the Loewner differential equation that is satisfied by univalent subordination chains of the form $f(z,t)=e^{int_0^t A(tau){rm d}tau}z+cdots$, where $A:[0,infty]rightarrow L(mathbb{C}^n,mathbb{C}^n)$ is a locally Lebesgue integrable mapping and satisfying the condition $$sup_{sgeq0}int_0^inftyleft|expleft{int_s^t [A(tau)...
متن کاملGrowth analysis of entire functions of two complex variables
In this paper, we introduce the idea of generalized relative order (respectively generalized relative lower order) of entire functions of two complex variables. Hence, we study some growth properties of entire functions of two complex variables on the basis of the definition of generalized relative order and generalized relative lower order of entire functions of two complex variables.
متن کاملAntiderivatives for Complex Functions
Since we have the same product rule, quotient rule, sum rule, chain rule etc. available to us for differentiating complex functions, we already know many antiderivatives. For example, by differentiating f (z) = z one obtains f ′(z) = nzn−1, and from this one sees that the antiderivative of z is 1 n+1 z – except for the very important case where n = −1. Of course that special case is very import...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales Polonici Mathematici
سال: 2001
ISSN: 0066-2216,1730-6272
DOI: 10.4064/ap76-3-7